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Abstract. We propose a two-dimensional model for the organization of stabilized microtubules driven by
molecular motors in an unconfined geometry. In this model two kinds of dynamics are competing. The first
one is purely diffusive, with an interaction between the rotational degrees of freedom, while the second one
is a local drive, dependent on microtubule polarity. As a result, there is a configuration dependent driving
field. Applying a molecular field approximation, we are able to derive continuum equations. A study on
the solutions of these equations shows non-equilibrium inhomogeneous steady states in various regions of
the parameter space. The presence and stability of such self-organized states are investigated in terms of
entropy production. Numerical simulations confirm our analytic results.

PACS. 05.65.+b Self-organized systems – 64.60.Cn Order-disorder transformations; statistical mechanics
of model systems – 87.16.Ka Filaments, microtubules, their networks, and supramolecular assemblies

1 Introduction

Using a theoretical physics approach, we introduce and
analyze a stochastic model inspired by the self assembly
process of the cytoskeleton.

The cytoskeleton can be seen as the “infrastructure”
of eukaryotic cells, providing for both (dynamically evolv-
ing) spatial structure and internal transport processes
that are fundamental for the cell itself and its role in
a living organism [2]. We focus on questions concern-
ing the statistical mechanics of this particular biologi-
cal system, mainly its ability to assemble in a variety of
symmetry-breaking phases, which are commonly believed
to have non-equilibrium nature and are considered impor-
tant for cell morphogenesis. The non-equilibrium forces
that give rise to these phases are usually ascribed to both
the so-called dynamic instability of microtubules (associ-
ated with a confining geometry, see for example [3]) and
the action of molecular motors. Dynamic instability is a
non-equilibrium polymerization/depolymerization process
that enables microtubules or actin filaments to exert forces
on confining surfaces such as the cell membrane. Molecu-
lar motors are a much studied family of proteins that are
able to generate active motion on cytoskeletal filaments.

Numerical and in vitro experiments (some of which are
called self-organization assays) [5–8], show that ensembles
of microtubules and active motors can self-organize un-
der proper conditions, and this ability is strictly linked
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to motor activity. In the in vitro self-organization assays,
motors are typically found in soluble complexes and op-
erate when two or more filaments are present; dynamic
instability does not seem to be determinant.

In this paper we concentrate on the role of motor pro-
teins and do not consider dynamic instability. In a previ-
ous article [9] we have theoretically shown that in motility
assays, where motor proteins are adsorbed on surfaces and
the “gliding” process of single microtubules is observed,
rotational diffusion [1] leads to purely diffusive dynamics.

This finding brought us to investigate the breaking
of rotational symmetry, in the form of pattern forma-
tion, as a many body effect. That is, we consider the ex-
cluded volume interaction of many filaments. This is dif-
ferent from cooperation of motor proteins that is typically
investigated in the situation of muscle contraction;
(see [10,25] for interesting recent examples of stochastic
modeling in this context).

Concisely, our problem can be stated in terms of ex-
istence of inhomogeneous non-equilibrium steady states.
From this viewpoint, our model is on the same level as
many other models of non-biological systems, such as a
fluid with convecting flow, or a non-equilibrium chemical
reactor (this is true as long as we are not modeling the self-
regulatory processes that take part in cell morphogenesis,
see [4]).

What makes our choice distinct and particularly in-
teresting for statistical mechanics is that the generalized
force which keeps the system far from equilibrium is not,
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in general, a global field or some boundary condition,
as is usually found in the literature on far from equilib-
rium systems, but a local release of energy associated with
transport.

The model, which is a two-dimensional lattice spin sys-
tem, is presented in Section 2.

In order to discover the relevant variables of the real
system we explored different ways to implement its micro-
scopic dynamics [11]. In this paper we limit the discussion
to the simplest case we could find showing significant re-
sults.

This point needs some clarification. Our working hy-
pothesis is that the relevant features of the system are the
competition between diffusion and motor drive, together
with excluded volume interactions. The aim of our inves-
tigation is not to reproduce in detail the mechanical fea-
tures of the microscopic system but rather to analyze the
behavior of averaged quantities. Many different dynamics
can reproduce the right averages (we follow the concept of
universality in statistical mechanics), so our objective is
to find the essential features that a microscopic dynamics
needs to have to reproduce the desired behavior. Of course
this leaves many possibilities open to choose a microscopic
dynamics and one has to be guided by considerations on
experimental models. Such considerations are extremely
useful to give an intuitive grasp on the interpretation of
microscopic dynamics. Nevertheless, the rigorous justifi-
cation of our microscopic model has to be sought in the
results it gives for macroscopic, averaged observables.

All of the dynamics we developed are based on
the competition between a diffusive process (when mo-
tors are detached from filaments or not active) and a
driven-diffusive one (when motors are active), this means
that they fall in the class of competing dynamics
models [14,15].

In the system presented in this paper, the driven
process is developed in a way that is resemblant to
Schmittmann and Zia’s driven diffusive systems [12,13]).
This case is most easily interpreted in terms of many
body motility assays, so we will stick to this interpretation
throughout the paper. Unfortunately, we are not aware of
any experiments of this kind focused on self-organization,
so we dedicate Section 6 to discuss the possibilities of em-
ploying this microscopic dynamics for the experiment in
reference [6] and the results we obtained with a different
choice for the driven process, which seems more sound for
this case.

In Section 3, starting from microscopic dynamics, we
use a mean field approximation to derive a set of four
discrete evolution equations for the system. We discuss
the problems that arise when one considers the continuum
limit of these equations in order to obtain a more at hand
system of differential equations. In particular, the result
of this limit is related to the characteristic times of the
two competing dynamics.

Once we have obtained a set of differential equations
on R2, we look for steady states in different regimes. In
the two limiting cases of dominant diffusion and domi-
nant drive, we find, respectively, the usual homogeneous

Gibbs states and blocked phases; whereas, when the two
dynamics are mixed, a new class of entropy-producing,
phase-separated states emerges. By linear stability anal-
ysis, we find in parameter space the instability region of
the homogeneous states.

Finally, in Section 5, the analytical results are com-
pared with those obtained by numerical simulation. In
order to tackle the problem of entropy production nu-
merically, we apply some of the machinery related to the
fluctuation theorem by Gallavotti and Cohen (reviewed
in [16]), that has recently been established for stochastic
dynamics [17–19].

2 Microscopic dynamics

We imagine that motors are adsorbed on a flat surface
and can push the filaments as in motility assays. Our aim
is to find a transition to self-organized, inhomogeneous
states. Experiments of this kind, though in principle pos-
sible, have not been tried to our knowledge.

On the other hand, in the self-organization experi-
ments described in [6,7], microtubule-associated motors
are linked in bundles by some other proteins, and the
bundles are in solution. Links of these experiments to our
model will be discussed in Section 6.

We discretize space, time, and the orientation of the
filaments. So we define a 2-dimensional square lattice Λ
and we imagine that each lattice site is either empty or
occupied by the center of mass of a filament. This corre-
sponds to associate to each lattice site x ∈ Λ a spin σx
which takes the null value when the site is empty. The
other possible values of the spins are determined by the
discretization on the orientational degree of freedom. With
these assumptions, microtubules are treated as rigid rods,
and dynamic instability is neglected. The minimal choice
is that spins take values in {+1,−1,+i,−i, 0}, correspond-
ing to the four fundamental orientations of the filaments
and to the empty site (see Fig. 1). Our results will show
that this choice is significant.

The thermodynamic equilibrium properties of the
system are determined entirely by its Hamiltonian H.
We take

H = J
∑
x,y
n.n.

σ2
xσ

2
y +K

∑
x,y
n.n.

σ4
xσ

4
y . (1)

This is just the most generic form that H can take in our
case, provided that the interaction is nearest neighbor.

Intuitively, the first coupling constant, J < 0, stands
for an interaction between the directions of the rods (re-
gardless of their orientations), and mimics excluded vol-
ume effects on directions. K, on the other hand, is sensi-
tive to the presence or absence of the filaments.

The choice of a nearest neighbor Hamiltonian is con-
nected to the problem of the filament length. From a
purely geometrical point of view, if a is the lattice spac-
ing, a filament of length L should interact with L

a sites.
On the other hand, we can do the statistical mechanics of
this system after a preliminary coarse graining procedure.
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Fig. 1. Conventions adopted for lattice and occupation vari-
ables. Complex values of the spins are merely adopted to make
our computational life easier. Microtubule directions are along
the axes. Spins are 45◦ to lattice bonds so that interaction with
all four nearest neighbors is symmetric.

This renders the Hamiltonian nearest neighbors, while the
constants J and K keep memory of the original scale,
becoming functions of the (mean) length L of the fila-
ments (for example J,K ∼ L2, see [23]). The spin of each
site takes the meaning of a cluster spin, so even though
we speak of filaments as they were in 1:1 correspondence
with our spins, this is merely a convention, because one
spin may already be the result of mesoscopic averaging
procedures.

From expression (1) it is easy to see that the stat-
ics of this model is equivalent to that of the 2-D Blume-
Emery-Griffiths model with only two relevant coupling
constants (see [20] for a complete mean-field analysis of
the phase diagram). In fact, the effective levels reduce to
three (σ2 = ±1, 0), two of which are 2-fold degenerate.
They correspond to the two possible directions (regard-
less of orientation) of the filaments and their absence.

Since external fields are absent, our Hamiltonian pro-
duces two kinds of spatially isotropic states, which are as-
sociated respectively with the well-known liquid/gas and
isotropic/nematic transitions [20]. Note that the phases
that the system can exhibit are related with the assump-
tion on the discretization of the rotational degrees of free-
dom. A finer discretization could bring to a larger num-
ber of phases. However, the phases would all be spatially
isotropic, causing little change in the problem of the tran-
sition to inhomogeneous states.

We now consider the time-dependent properties of the
model. The evolution algorithm is made of two branches,
the first of which is a diffusion and the second a driven
diffusive process. Both processes take place in presence of
the Hamiltonian H and include two kinds of elementary
Monte Carlo moves:

• Nearest neighbor spin exchange (only effective when one
of the two sites is empty) σx ↔ σx′ x′ ∈ n.n.(x)
(Kawasaki dynamics).

A       B

C D

x

Z

Fig. 2. Motor action. ∆H is shifted by −E for Kawasaki ex-
changes with sites A and B, identified by the arrow head, and
by +E for exchanges with C and D.

• Local orientation σx 6= 0 → σ′x 6= 0 (Glauber dynam-
ics).

In the diffusive steps, when the interaction with mo-
tors is not active, the two kinds of moves correspond re-
spectively to translational and rotational diffusion of a
microtubule.

The probability of accepting a move is a modified
Metropolis

A =
1
2

(
1 + tanh

∆H

2

)
.

We now “turn on” the interaction with motor proteins,
and see what happens. What we assume is that motor
drive will act on the translational diffusion of the centers of
mass of the filaments, transforming it in a driven diffusion,
and that rotational diffusion will be inhibited.

In order to model motor activity, we modify A in the
same way that is commonly used in the context of driven
diffusive systems [12]. That is, ∆H(C,C′)→ ∆H(C,C′)±
E(C) when configuration C is favorable for motor pushing
forward or pulling back the filament (see Fig. 2). H can be
taken to be the same as in (1). E(C) is the driving field,
and is proportional to the work done by the motors.

This way of modeling molecular motor driven dynam-
ics contains a number of hypotheses. First of all, we sup-
pose that the motors will push the microtubules every time
they can. Secondly, the motors are spread with constant
density and push one filament at a time (an intuitive as-
sumption for motility assays; in Sect. 6 it will be discussed
for the case of self-organization assays). Lastly, the motor
action forces microtubules to preserve their orientations.
The justification for this last hypothesis for a motility as-
say lies in the fact that as soon as two motors are attached
to one filament, its direction is frozen except for the elastic
fluctuations of its head and tail (see [9,26]).

The fact that the pushing of the motor is actually a
diagonal translation may cause some perplexities. On the
other hand, our dynamics is set up taking into account
two degrees of freedom, translational and rotational, that
are independent. So they have to be activated in different
elementary moves. The overall motion springs from a se-
quence of such moves. In this view, motor action is just
a bias in the translational dynamics. We also tested [11]
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numerically a dynamics where motors push linearly (ex-
change is favored with site Z in Fig. 2) obtaining no qual-
itative change in the results (but this choice complicates
our analytic mean field calculations because of the fact
that translations involve next nearest neighbors).

We would like to make a final remark on the boundary
conditions. We adopted periodic boundary conditions in
our simulations.

The simultaneous presence of two competing dynam-
ics, each one with its own characteristic time, makes it
reasonable to expect (see [15]) that possible steady states
have a non-equilibrium (non Gibbsian) nature regardless
of the boundary conditions. This fact is confirmed by our
mean field analysis.

When considering the dynamics of active motors alone,
the condition above ceases to be valid and we are in the
case of a four species driven system. One should keep in
mind the following remark.

When E 6= 0, the resulting driving field depends on the
space-time configuration of the system. As it arises from
a modification of the Metropolis acceptation probability,
each translational step of the microscopic dynamics au-
tomatically satisfies detailed balance with respect to the
modified energy difference,

W (C′ → C)
W (C→ C′)

=
Peq(C)
Peq(C′)

= eβ(∆H±E(C)).

However, in general, detailed balance is not satisfied for
periodic boundary conditions [12]. For this reason, one
can expect to observe inhomogeneous (“blocked”) steady
states even in the presence of the sole motor dynamics.

To sum up, the main features of the model are the
following:

• It is a model with competing dynamics. Thus, the char-
acteristic time scale ratio of the two dynamics plays an
important role in its behavior [14].
• It is related to so-called multiple species driven sys-

tems [12,13,21], to which it reduces when Glauber-like
dynamics (rotational diffusion) is not active and peri-
odic boundary conditions are set.
• It can be interpreted as a reaction/diffusion model, in

which four diffusing species, driven in four orthogonal
directions, are subject to (equilibrium) chemical reac-
tions controlled by the Ising Hamiltonian (1).

3 Mean field approximation and continuum
equations

The dynamics we described in the preceding section
defines a Markov process on the lattice Λ. The time-
dependent probability of a configuration C = {σx}x∈Λ is
given by the master equation [15,22]

d
dt
P (C, t) = (τpLp + τaLa)P (C, t) (2)

where τp, τa are the characteristic times of the two dynam-
ics. Physically, τa and τp represent a slow process with re-
spect to the entire process of interaction between a motor

and a filament. Therefore at the time scale we adopt, the
dynamics is regarded as a diffusive or a driven one when a
filament encounters on average a small or a large number
of motors respectively.

Lp, La are the generators of the evolution when mo-
tors are passive and active respectively. The operators con-
tain the transition probabilities W (C,C′) from configura-
tion C to C′, which can be easily written down following
the description of the model given in Section 2. For diffu-
sive dynamics regulated by Hamiltonian (1) (switched off
motors)

W (x|C→ C′) = δσx,0δσx,σ′x +
1
4

(1− δσx,0)

×
∑
q

{
(1−δσx+q,0)

1
3

(1−δσ′x,0)(1−δσ′x,σx)[
1
2

(1−Th
∆H

2
)]

+ (δσx+q,0)δσ′x,0δσ′x+q,σx
[
1
2

(1− Th
∆H

2
)]
}
.

In the case of driven dynamics the corrections are
that Glauber transitions (rotations) are inhibited, and
∆H(C,C′) → ∆H(C,C′) ± E(C) when the configuration
is such that the motors can do work (Fig. 2).

Instead of postulating, as is usually done [12], some
mesoscopic equations on the basis of symmetries and phys-
ical considerations, we start from microscopic dynamics
and develop a local mean field approximation. The main
assertion of this approximation is that the probability of
a configuration factorizes as

P (σx) =
∏
x∈Λ

p(σx)

where p(σx) is the most general single site measure:

p(σx) =
∑
I

pIδσx,I ;
∑
I

pI = 1,

(I runs on all the possible values of the spin).
With these assumptions, the mean value of a function

of n spins can be written

〈F (σx1 , . . . , σxn)〉 =∑
I1,... ,In

F (I1, . . . , In)[pI1(x1) . . . pIn(xn)].

We use this approximation to obtain the evolution equa-
tions of the first moments. Such discrete equations are
sums of the mean values of some quantities computed in
four different sites of the lattice, reaching next-next near-
est neighbors. Namely, given a lattice versor a, one has to
consider the cluster containing both the nearest neighbors
of x and those of x + a. We get expressions that involve
the parameters

• H(x) = 〈1− σ4
x〉 (density of holes);

• M(x) = 〈σ2
x〉 (quadrupole moment; interpreted as the

mean value of the net filament direction);
• g(x) + if(x) = 〈σx〉, identified with vector field D(x) =

(g(x), f(x)) (orientation of the filaments).
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Using Taylor expansions we obtain the following
equations:

Ḣ = −div[−∇H + JHM∇M −KH(1−H)∇H]
− rE div (HD) (3)

Ṁ = div[(H)2∇M
H

+ JH(1−H)∇M −KHM∇H]

+ rE div (HT̂D)
− (1− r)(M + Th(4JM)) (4)

ġ = div[H2∇ g

H
+ JgH∇M −KgH∇H]

+ rE∂x[(1−H +M)H]

− (1− r)g(1 +
1
2

Th(4JM)) (5)

ḟ = div[H2∇ f

H
− JfH∇M −KfN∇H]

− rE∂y [(1−H −M)H]

− (1− r)f(1− 1
2

Th(4JM)), (6)

where T̂ is the conjugate operator in R2.
A continuum limit has been performed along an appro-

priate path in parameter space, so that one characteristic
time and the lattice spacing a have been eliminated. Con-
sequently, we are left with four significant (rescaled) pa-
rameters, J ,K,E, r. The first two concern the equilibrium
properties of the system, while the others are indicators
of its being far from equilibrium.

r gives the relative weight of the two dynamics and is
related to the ratio Γ = τp

τa
of the two characteristic times

by the equality r = 1
Γ+1 . r is independent of the motor

drive E; in fact, E only appears in association with r in
the equations, so that we interpret the quantity rE as the
non-equilibrium generalized force generated by the motor
action.

In the equations above, r may be regarded as a free,
phenomenological, parameter, as is not fixed by any as-
sumption on our model.

Establishing the relationship between r and some un-
derlying microscopic parameters, such as motor density
and microtubule length, is a problem that falls beyond
the reach of our model, and that requires a more detailed
analysis of the physical system.

For motility assays, the analysis of Duke and oth-
ers [26] specifies the microscopic process as a Markovian
stochastic evolution of the number n of motor proteins
attached to a microtubule. Following this work, one can
identify (see [9]) τa with the mean first passage time for
going from n = 2 (two attached motors) to n = 1 (one
attached motor), and τp with the mean time in which a
microtubule is attached to 0 or 1 motor, obtaining:

τa =
L+ 2d̄
L+ 3d̄

d̄2

vL

(
e
L
d̄ − 1− L

d̄

)
τp =

L

v
+

2d̄
v

where d̄ is the mean distance covered by a filament before
linking a motor; it can be related to the surface density of
the motors and other physical parameters. v is the aver-
age speed of filaments, and L their length. This gives the
expression for r

r = 1−

L2

d̄2

(
1 + 3

d̄

L

)
(

e
L
d̄ − 1− L

d̄

) ·
We have already said (page 485) that microtubule length
enters through the parameters of our model. The above
formula is a way to relate the filament length to the pa-
rameter r via independent, more detailed modeling.

Equations (3–6) have the structure of reaction-
diffusion equations, with no source for H, as the filament
number is fixed. The sources for M , g and f arise from
the interaction between filament directions.

The existence of a source makes them different from
other equations obtained in the same way for two-species
driven diffusive systems [21,27]. Another difference is that
in the latter case, having just two species and a field forc-
ing in one spatial direction, mean field equations come out
to be one dimensional, while ours are not. However, by
the general consideration that patterns are usually lower-
dimensional (see [28]), we expect that our solutions will
depend on one spatial variable, as well. The following sec-
tions will provide more specific justifications of this fact.

4 Steady states and stability

A quick glance at our equations is sufficient to conclude
that they always admit the homogeneous solution

H = H̄

f, g = 0

M = M̄

where, by definition of the parameters, |M̄ | ≤ H̄, and M̄
satisfies the Ising-like equation

M̄ + Th(4JM̄) = 0.

The above solution is the Gibbs equilibrium one when
rE = 0.

It is interesting to notice that, when E = 0, even if
r 6= 0, our equations can be derived from an equilib-
rium free energy; that is, they have the form Ẋ = δF

δX ,
with F a suitable functional of the fields. In particular,
equations (3, 4) are decoupled from equations (5, 6). The
first two describe a relaxation process to the equilibrium
phases of our model, while the others admit as a unique
stationary state the null field D = 0. These considerations
cease to be true as soon as E 6= 0.

In fact, when rE 6= 0, non-zero irreversible currents
for f and g arise:

Jg = rEH̄(1− H̄ + M̄) (7)
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Fig. 3. Linear stability analysis results. q is the wave vector
of the perturbation. For q > q∗ the solution is always stable
(up). If q < q∗, E and M are fixed, the stability region looks
like the one represented in the lower sketch.

and similarly for Jf . These stationary currents are the mir-
ror of a nonzero entropy production which we can measure
numerically (see Sect. 5), and, as with this last quantity,
are linear in the non-equilibrium drive rE.

We perform linear stability analysis around this homo-
geneous solution (resumed in Fig. 3), to find out that the
system, far from equilibrium, for perturbations of small
wave vector, becomes unstable in a region of the H̄, r
plane.

Our methods coincide with the ones in [28]. Current
terms are kept to lowest order. q is the wave vector of the
perturbation. The instability may arise only for perturba-
tions of wave vector smaller than q∗. This implies that the
size of the system must be at least of order 1/q∗, or else
the homogeneous solutions will be the only stable ones.
For q < q∗ we find an instability if

H̄(1− 2H̄ + M̄)

(1− H̄)(1− M̄

2
)
>

1− r
r2E2

·

As can be seen from the picture, for low concentration of
filaments and low r the system is always in a stable ho-
mogeneous state. The system may become unstable after
r reaches a critical value rc.

The next thing to do is to verify that this instability
leads to the inhomogeneous solutions we expect. In doing
this, we employ the same techniques used in [21,27], that
is, successive substitutions leading to a nonlinear dynami-
cal system for the variable H. Let’s outline our procedure.
By keeping terms to lowest order in the fields one has a
hint at what the solutions look like. In this view, from
equation (3) one obtains the relation

∇H = rEHD + . . . (8)

When r ∈ (0, 1) and the two dynamics are actually com-
peting, Using (8) in equation (4) we can write an expan-

Fig. 4. Plot of a solution of equation (10) obtained with the
boundary condition H(x) −→ H1 as x → ±∞, which, given
the total density, fixes the width of the stripe.

sion of M(x) around the Ising value M̄

M = M̄ + α[(1− M̄)∂2
xH − (1 + M̄)∂2

yH] + α2 . . . (9)

with

α =
1

(1− r)(1 +
J

cosh2(JM̄)
)
·

The last step is to use these two results in equations (5, 6).
It is easy to acknowledge that the source terms for

g and f , are equal to zero iff g and f themselves are.
Thus, the two fields are tendentially brought to zero by
the dynamics (Eqs. (5, 6)).

However, the decay times of f and g are very different.
Precisely, they are determined by the sign of M . Accord-
ingly, one of the two, say f , goes rapidly to zero while
the other does not, so equation (6) allows studying the
stationary states that depend on just one spatial variable,
and we can substitute relations (8, 9) in equation (5) and
obtain (similarly as in [21,27]) the ordinary differential
equation for H(

∂H

∂x

)2

= AH4 − r2E2H3 +
1
2
r2E2(1 + M̄)H2 +BH

− (1− r)2 + M̄

6
H log|H| (10)

where A and B are constants of integration, related by
the constraint that total density is fixed.

We find two classes of solutions of equation (10). The
first are periodic functions, while the other are the stripe-
like states shown in Figure 4.

Rigorously, we should perform a linear stability anal-
ysis around the solutions we find to make sure they are
stable, and thus significant. Unfortunately, this is a very
hard task, so we have to rely on the observation that in
numerical simulations inhomogeneous states appear and
are long lasting.

If we consider an unbounded system and impose the
boundary condition that H has a constant value (inter-
preted as the background density of holes) at ±∞, the
constants of integration are fixed, and the only solution
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Fig. 5. Steady states obtained with our simulations for J = 1,
K = 1.5, E = 8 and different values of r. The case r = 0 is the
equilibrium state, and the system is not sensitive to the value
of E. For r = 0.7 a stripe-like pattern is clearly identifiable.
As r becomes closer to 1, droplet-like metastable states become
more and more long lasting. For r = 1 we obtain blocked states.
These results do not change sensibly as long as J > 0 and J,K
are significantly lower (about one order of magnitude) than E.
K can be positive or negative. Note that, for r = 1 the system
is disordered in orientation.

that we get is stripe-like. Differently from the ones found
in the literature [21], our stripe-like solutions are charac-
terized by the fact thatH may reach the null value. So that
there exist lines along which the density reaches its maxi-
mum value, compatibly with excluded volume. Along the
same lines we find a discontinuity jump of the orientation
field D, whereas M fluctuates around the Ising value M̄
modulated by the second derivatives of H. (Notice that,
at this stage, the constraint that M must always be lower
than H has to be implemented; we verify that it is satis-
fied for suitable values of J .) This behavior is confirmed
by the results of our numerical simulations. For compar-
ison, in Figure 5 are shown some snapshots of stationary
states taken from our simulations.

Finally, we want to note that, for r = 1 (and E 6= 0),
the four species are always simultaneously present and
conserved, so the expansion (9) around the Ising value
of M ceases to be significant, and is substituted by the
relation

∇M
H

= ET̂∇ 1
H

+ . . .

In this formula the presence of the conjugate operator
T̂ imposes that the solutions depend on just one spatial
variable, in agreement with a pure multi-species driven

r

Fig. 6. Accepted translations per sweep at the steady state,
mean value. The parameter is plot versus r, and E is fixed
(J = 1, K = 1.5, E = 8). The slope of the curve represents the
mobility, which, after reaching the saturating value of zero has
a jump to negative values, meaning that an increasing drive
inhibits translations. The jump in this parameter corresponds
to the critical value for r. Doubling E determines a change in
the calculated points of less than four percent (this is also valid
for Figs. 7–9).

diffusive system, and we find so-called “blocked” states
present in the literature.

5 Simulations. Entropy production

We perform simulations at fixed total density equal to
1/2 on a 40 × 40 square lattice. Monte Carlo time unit
τ corresponds to 1600 moves, or one lattice sweep. E is
typically one order of magnitude greater than J and K.

Among the parameters we examine are the mean val-
ues of M and D, and the mean number of accepted rota-
tional and translational Monte Carlo moves (per sweep).
The latter quantities measure the relative mobility of the
system, that is, how much a state is “blocked” (see Figs. 6
and 7).

In order to calculate these means, data are sampled
each 103τ . Total running time is about 106τ . The time to
reach a steady state goes from 104 to 105τ . Inhomogeneous
steady states typically arise for great enough values of rE
and have the form of a stripe either orthogonal or oblique
with respect to the direction chosen by the filaments. An
alternative state is shaped like a droplet (of arrows with
the same direction). This last state is metastable for in-
termediate values of r, but its stability time diverges as
r→ 1 (see Fig. 5).

To analyze these states, we pay particular attention to
the entropy production and the structure factor.

Following Lebowitz and Spohn [18], we define the en-
tropy production at the stationary state as

d
dt
Sirr =

d
dt
Sflux =

1
t
〈W (t)〉
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r

Fig. 7. Mean value of accepted rotations per sweep versus r
at the steady state (J = 1, K = 1.5, E = 8). A decided drop
of this parameter is observable at critical r.

with

W (t) = E

∫ t

0

4∑
i=1

∑
bonds

Jbond,i(s)ds

where Jbond,i is the net current of the ith species along
the bond in the driven dynamics, and the above integral
is just a sum over Monte Carlo times.

With this definition, we identify two distinct regimes
(Fig. 8).

In the first one, characterized by low r, a class of ho-
mogeneous entropy producing steady states is observable,
and entropy production increases almost linearly with r
(see Sect. 4).

In the second regime inhomogeneous steady states ap-
pear, and entropy production drops. The critical value of
r that separates these two behaviors is also evident from
the graphs of mean accepted moves per sweep (Figs. 6
and 7). We estimate this value to be rc ' 0.45. Consider-
ing the discontinuities in the parameters, we believe that
the transition is of the first kind.

On the other hand, the structure factor is defined as

S(k) = 〈|G(k)|2〉

with

G(k) =
1
L

∑
x

σ4
xe2πik·x.

In particular, we observe the values assumed by S(k)
in correspondence with wave vectors k that are sensi-
tive to stripe-like states in various directions; namely
k = (0, 1), (1, 0),

√
2

2 (1, 1),
√

2
2 (1,−1). If suitably normal-

ized, these quantities take the value of unity when the
stationary state is a stripe in a well-defined direction; typ-
ical values for droplet-like states are around 1/2.

r

Fig. 8. Entropy production at the steady state as a function
of r (J = 1, K = 1.5, E = 8). After the parameter attains its
maximum, there is a drop and the system begins to structure.
In the high r region the situation is more confusing because of
the appearance of metastable states. In fact droplets usually
produce less entropy than stripes. When r = 1, entropy pro-
duction of the steady states appears to be practically zero, even
though the states are not absorbing, because the microscopic
dynamics is, in principle, active. This effect is a consequence
of the fact that the driving field E is very strong.

Notice that time averaging of |G(k)|2 may be meaning-
less if the system explores a number of different inhomo-
geneous steady states, so one has to be very careful about
the state being stable.

Figure 9 is a plot of the structure factor of the steady
state as a function of r. In the high r region, metastable
states are subject to a slowing down of the dynamics and
become long lasting. This is reflected by the two distinct
behaviors of the structure factor that can be seen in the
picture (see also Fig. 8).

To sum up, our numerical studies confirm the results
of mean field analysis, and reveal a more intricate phe-
nomenology for higher values of r. Due to the appearance
of a slowing down in the dynamics, we suspect the exis-
tence of a second phase transition in this region, but more
work is needed. In particular, a finite size scaling analysis
could be important.

6 Links to self-organization assays

We proceed by suggesting a possible interpretation of
the microscopic model in terms of self-organization assays
(mainly Ref. [6]).

In doing this, there are a few main issues to address.
First of all, our spins are driven one at a time whereas
filaments need to be at least two to be driven by the cross-
linking soluble motor complexes of [6]. Second, motor com-
plexes do not have a fixed position, but can diffuse. Third,
as the cross-links between filaments can produce a torque,
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r

Fig. 9. Structure factor as a function of r (J = 1, K = 1.5,
E = 8). This quantity starts to rise when r reaches its crit-
ical value. The dashed line represents metastable droplet-like
states, which become long lasting as r increases, and stable for
r = 1. The solid line stands for stripe-like states, regardless of
their orientations.

a new question arises: do we need to take into account a
driven rotational dynamics?

Dealing with the first two issues is quite a simple
matter.

In particular, the first one affects the elementary move
of the motors. We have tested a different dynamics for mo-
tor drive [11] which is more intuitively connectible with
the experiments in question. Referring to Figure 2, the
move of a motor is favoured by the field E(C) if the sites A
and/or B are filled, and is an exchange with the next near-
est neighbor Z. Numerical results show the emergence of
inhomogeneous states and the same qualitative behavior
as the ordinary model. New kinds of self-organized states,
as the stripe parallel to filament direction of Figure 10
appear. The continuum mean field theory becomes a bit
more complicated, due to the appearance of terms in the
powers of (1−H) in our system of equations. These terms
come from the need of a filled neighbor for a translation.
Nevertheless, the identified solutions remain valid in the
limit of high filament density.

As to the second issue, at the scale we consider, motors
act as a random field and it is not relevant whether this
is a result of Brownian motion or of a static configuration
of the motors.

The third question is more essential and involves the
role of rotational driven dynamics in the process of self-
organization.

The fact that the forcing torque privileges the rota-
tional moves aligning the filaments does not affect the
nature of the stationary states. In fact, in our ordinary
model, inhomogeneous states arise thanks to the joint ef-
fect of the driven translations and the aligning due to the
coupling J . So the torsional drive is not in competition
with equilibrium thermodynamics and can be absorbed
in the coupling constants J and K, provided the system

Fig. 10. Stripe-like stationary state for the dynamics mimick-
ing self-organization assays. The values of the parameters are
J = 1, K = −5, E = 2, r = 1/2.

exhibits orientational order. Only an analysis of the times
of relaxation could distinguish between the two behaviors.

Finally, the task of connecting the effective parameters
of our model with the microscopic ones can be achieved
with microscopic modeling of the kind of reference [26],
specifically oriented on self-organization assays.

7 Conclusion

We have introduced a model of non-equilibrium statisti-
cal mechanics whose most interesting feature is the fact
that the generalized force is a dynamic configuration de-
pendent field. This feature has been inspired by the action
of molecular motors on cytoskeletal filaments, so we have
made quantitative effort throughout the paper to interpret
our model in terms of systems that involve these objects.

Through analytic (mean field) approach and simula-
tions, we have found evidence for a non-equilibrium phase
transition to inhomogeneous states. We were able to see
that these inhomogeneous steady states are genuinely far
from equilibrium, checking their microscopic currents and
entropy production. This results may be seen as a theo-
retical evidence that a local drive in competition with dif-
fusion and excluded volume effects are sufficient to reach
self-organized states.

Work in progress on some variations of the model de-
scribed in this paper make us confident on the general-
ity of this statement. We already mentioned briefly two
of these variations (pages 486 and 491). Other numerical
experiments have been tried for quasi three-dimensional
geometries, that is, allowing filaments to cross each other
when diffusing with translations, and different moves for
motor action, all showing the emergence of inhomogeneous
stripe-like states.

More work is needed to understand fully the statistical
mechanical properties of our model. In particular, we are
working on three issues.
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First of all we want to perform a more careful analysis
of the high r region, aiming to understand the nature of
the stripe-like and droplet-like states and their relation
with the finite size of the lattice.

Secondly, we would like to know if the role played
by the field M is the same when one has a less radi-
cal discretization of microtubule directions, for example
if σ ∈ S1.

Lastly, the dynamical properties of the relaxation of
this model to its stationary states are fully undiscovered.
In particular, an analysis of this kind could be useful to
understand the role played by torsional drive in dynamics
resembling self-organization assays.
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